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The investigation of laminar free convective plumes in an otherwise stationary 
environment has formed the basis of numerous investigations, initiated by 
Zeldovich (1937). For the non-rotating environment alone the authors have been 
able to locate twenty-nine papers: many of these repeat work previously under- 
taken. There are, however, two cases of some technological significance which 
have so far not been considered: (i) the plume in an otherwise quiescent environ- 
ment for a fluid of very large Prandtl number, of importance in the heating of 
reservoirs of viscous fluid such as fuel oil; and (ii) the case of vanishingly small 
Prandtl number, of application to liquid metal-cooled nuclear reactors. Both of 
these cases have some theoretical interest, as will be shown. Their analysis 
leads to singular asymptotic perturbations and hence to matched-expansions 
techniques. 

1. Introduction 
The behaviour of both laminar and turbulent free convective plumes in an 

unconfined environment is well known. However, with the sole exception of a 
paper by Spalding & Cruddace (1961), the asymptotic cases for extreme values 
of the Prandtl number CT have not been analysed. Those authors obtained the 
first term of an ‘outer’ solution for the fluid of cr B 1 on a semi-intuitive basis. 
The reason for this seems to be the singular behaviour of a plume at  very large 
and at  very small CT. Whereas the derivation of similar flows over vertical or 
horizontal plates is comparatively simple (Kuiken 19683,1969; Rotem & Claassen 
1969a), this is not the case for the thermal plume: here the velocity does not 
vanish in the plane of symmetry of the jet. For the configuration with a solid 
boundary, the ‘no-slip ’ condition assures the disappearance of the velocity, 
while in the present case it is rather the shear-stress which vanishes in the centre 
plane. In  the method employed in the analysis presented, two asymptotic ex- 
pressions will be derived for each case by choosing different width scales: the 
one valid near the axis, the other for the rest of the plume. Matching will be 
accomplished in the well-known way (Cole 1968). Uniformly valid approxima- 
tions will also be given and compared to data calculated numerically. We shall 
show that the nature of the solutions obtained differs considerably from that 

t Present address : Philips Research Laboratories, N. V. Philips’ Gloeilampenfabrieker, 
Eindhoven, The Netherlands. 
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known for flow over a solid boundary. As the way in which the asymptotic 
derivations will be obtained is not immediately obvious, a model problem will 
be investigated which will show the essential features. 

2. The model example 
Let an inb i t e  vertical plane heat source be given forming an imaginary surface 

immersed in a fluid initially a t  rest. Let x denote time and Tm the initial tem- 
perature of the surrounding fluid, y the co-ordinate normal to the plane. For 
x = 0, let the temperature of the plane increase to some large initial value and 
vary thereafter as xd. Then, for times larger than 0, the fluid will be set in 
motion due to buoyancy forces depending upon x and y alone. The equations of 
motion and energy-transport reduce to 

Here u is a parameter, later to be identified with the Prandtl number. The 
boundary conditions imposed are 

} (2) 
aU/ayl,=, = 0, e xx-* (x > 0 1 ,  

u = B = O ,  as y-too. 

The solutions found by elementary means are as follows: 

a-1 

8(x, y) = x-texp 

For large values of a the double-layer character of this model problem becomes 
evident: the temperature 8 will tend to the value of zero in a region in which the 
variable q = (y/2) (u/x)i exceeds order unity, while the velocity will tend towards 
zero in a different region where p = y/(Zx)* > 1. The first of these scales is of 
course wider than the second ‘for u 9 1. As 8 varies with exp ( - 72) the first 
region will be an inner layer, the second the outer layer. Recasting (3) in the 
‘ inner ’ variable 7, and expanding for large values of u, yields 

1 (q+ierfc(q))+0\(+-11 , (4) 

wheref = f(q), and the prime denotes differentiation with respect to the argument; 
and O ( 7 )  = Ox+* = exp ( -72). 

In  the ‘outer’ variable, however, 

- 
( 5 )  

[I - u-l+ Olu-21]. ierfc (p) + exponentially small terms. 

(6) 
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Thus, an analytical solution for asymptotically large values of u is clearly not 
physically meaningful: we shall proceed through the method of matched asymp- 
totic expansions. Substituting (4) and (5) into (l), 

Thus, for u + co, the inner layer reduces to df3/dqs N 0; that is, f’ N a, when 
account is taken of the first boundary conditions in (2). In  a similar manner, 
insight into the behaviour of the outer layer may be gained. 

3. The case of large Prandtl number 
Newtonian fluid of constant physical properties is assumed, incompressible 

except in as far as the dependence of density upon temperature is concerned, and 
the Boussinesq approximations are considered valid. Then it is well known that, 
with certain restrictions, boundary-layer approximations may be used even for 
the cases of v $ 1 and CT < 1 (Kuiken 1968a; Rotem & Claassen 1969a). Upon 
similarity transformations the two-dimensional boundary-layer form of the 
equations of momentum and energy reduces (following Yih 1956) to 

d2H 3u d 
dg2 5 ag -+-- ( F H )  = 0. 

Here the reference value adopted to render the velocity dimensionless is 
u, = G) vll, the reference temperature q/K; the functions F and El are linked to 
the dimensionless velocity and temperature in (11) and (12) below. Y is the 
kinematic viscosity of the fluid, 1 is a characteristic reference length conveniently 
chosen so as to render the maximum order of the vertical co-ordinate x unity, 
G is Grashof number (G 1) based upon It and the characteristic reference 
temperature$, Q is the heat dissipation from the source per unit length and time, 
while K is the thermal conductivity of the fluid. A dimensionless stream function 
q9 is given by 

whereby the function F(<) is defined. The variable 6 is given by 

= G*y ~ 4 ,  (12) 

where yG2 is a lateral ‘stretched’ boundary-layer co-ordinate normal to x (see 
Rotem & Claassen 1969b). The flow configuration is assumed to be infinitely 

t As the system is devoid of a characteristic length, the vertical distance from the 

$ That is, Q = ga@ZS/(Rv). 
line source is conveniently chosen to render the co-ordinates dimensionless. 
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wide in the third, z, direction. The dimensionless temperature defines a function 
H ,  thus 

where C is a constant. The boundary conditions, subject to which (9) and (10) 
have to be solved, are 

8 = Cx-*IT(<), (13) 

(14) 

Now, conservation of energy specifies that the total flux in the vertical direction 
be invariant above the source; therefore, 

1 F = d2P/d<' = 0,  H' = 0 (6 = 0), 
dF/d< = 0,  H = 0 (6+ 00). 

For convenience the scaling constant C, is normalized to unity. Due to the 
symmetry across a vertical plane passing through the source, 

The form of the fundamental solution for which cr may be set to infinity will 
be determined fist.  This had already been undertaken by Spalding & Cruddace 
(1961) who assumed on the basis of physical arguments that the 'inner' region 
would reduce to a singular sheet of fluid a t  a velocity varying with x but constant 
with y. Within this infinitely thin sheet of fluid the dimensionless temperature 
decreases from its maximum value a t  any given x to the ambient value (the 
latter set to zero). The fluid outside this layer is set in motion by viscous shear 
at the interface rather than by buoyancy. It was then found possible to determine 
the first-order term of the velocity of the 'inner' region, through an elegant use 
of an integrated form of the equation of motion. However higher approximations 
could not be obtained. 

The model problem discussed in 0 2 above shows the way in which the derivation 
of the fundamental term can be rendered less intuitive, and in which higher 
approximations may be derived. 

4. The 'inner' solution, c 9 1 

Introduce asymptotically stretched co-ordinates and variables as follows : 

b = dc, I?([) = d H ( < ) ,  %({) = dP(<). (16) 

The stretching of 6 to 
into (9) and (10) gives 

renders the inner layer of width-order unity. Inserting 
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Note that here the only term retained in the momentum equation (reduced to  
'inner' co-ordinates) represents viscous forces. This is in sharp contrast to the 
buoyant flow along a heated plate, where the inner equation expresses the equal 
order of magnitude of the viscous and buoyancy terms. Equations (17) and (1 8) 
have the form of (7) and (8). The boundary conditions become 

P = dZP/& = dBjdf  = 0, at f = 0, (19) 

and (15). The boundary conditions given are not sufficient to determine the 
solution: we must have for 5 + 00 a matching with an 'outer' solution (in the 
limit as a + CO with the passage to the limit in that order). The solutions will be 
assumed ad hoc to take the following form: 

(20) 1 P ( t ,  a) = P , ( f ) + o - ~ P , ( S ) - t ~ ( a ) . P , ( P ) +  0 . .  ? 

&f, a) = B,(t, + a-@1(f) + $ca,fi,ct, + . . * 

The functions & and $ cannot be completely determined until both approxima- 
tions have been calculated. Then they will have to be chosen so as to ensure the 
proper exponential decay of the temperature for the inner solution, and of the 
vorticity for the outer. 

Clearly the only zeroth-order solution satisfying both (17) and (19) is 

PotS) = aot, (21) 

where the constant a, will be determined later from the matching conditions. 
Inserting into (1 8), 

In  (22) the arbitrary scaling constant was chosen so as to satisfy the integral 
condition (15). The first correction term to both the P and B profiles is now 
obtained by inserting the expansions (20) into (17) and (18), equating terms 
with equal powers of a, and observing that (15) is already satisfied identically 
by the fundamental term: for higher-order terms the only requirement is that 
there be no contribution to the integral in the limit as o -+ 00. The first correction 
terms are 

The constant a, remains again undetermined until matching is carried out. 
The second-order correction will now be determined: assuming @(a) = a-1 gives 
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Using the expression for a,([) given in (24), the integrated form of ( 2 5 )  in the 
limit as becomes very large is 

d2P2 
a t 2  5 
__ = c+ a2 + transcendentally small terms 

The constant a2 can consequently be determined: 

The second gradient of F2 has to vanish on the axis of symmetry, and, for very 
small c, the following holds: 

As further terms of the inner expansion become increasingly complicated, while 
adding comparatively little physical insight, the expansion will not be continued 
any further. 

5. The ‘outer’ solution, a % 1 

The outer layer ensures the exponentially rapid decay of the velocity from the 
maximum at its inner limit to zero at its outer boundary. The temperature has 
already decreased (to fundamental and first orders) exponentially rapidly in the 
inner layer: therefore, the fundamental outer temperature term should reduce 
to the statement 8 = 0: the outer layer is that region in which the viscous and 
inertial terms must balance, buoyancy playing no role, and the velocities in 
both regions should be of comparable order of magnitude. Thus, the stretching 
to ‘outer ’ variables involves nothing more than a statement of the vanishing of 
H in the original equations (9) and (10). For the outer regions, variables super- 
scripted with a tilda will be used. The integral condition (15) is already fulfilled 
identically by the fundamental term of the inner expansion and applies here 
no longer. The boundary conditions are, d p l d c  + 0 as c -+ 03 and matching with 
the inner expansion as g-+ 0 (a + co) in that order. Inserting into (9), (10) tilda- 
superscripted variables and 

P ( [ )  = Po([, + c -q ( [ )  + O(c)  I”,([) + f . . (29) 

Fo and Pl are governed by 

As expected, only the fundamental term gives rise to a non-linear differential 
equation. Integrating (17) to order a-3, and using both (15) and (22 ) ,  we obtain 
(following Spalding & Cruddace) 
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Using outer variables we therefore have 

Finally, the matching condition for the fundamental terms, in inner variables, 
becomes, 

Then the matching condition for (30) is P,(O) = 0. Using the three boundary 
conditions, E'l(0) = ~ ' ( c o )  = 0 and (33), equation (30) is integrated numerically. 
The results are given in figure 1. The boundary conditions upon the next-order 
outer approximation are obtained by writing out the matching conditions to 
that order. For convenience, this was done in inner variables; outer variables 
throughout would have yielded the equivalent result. The inner expansion is 

As p-. m, erfc (2) --f 0; therefore, the inner expansion may be written, for p 9 1, 

a,g+a-ix __ - +alp--- +a-1 [ aol (E)2 12ai 5 1  

The outer expansion, written in inner variables, becomes 

Some of the boundary conditions are therefore already determined. Further 
ones are 

d2PO(O) - 1  

a t  a p  2a, 
-- = a,, ~ - dPO(0) PO(O) = 0, - 

(elimination of a, between the two last expressions yields again (33)), and 

dPl(0) d2P1(O) 1 3 4  
P1(O) = 0, - - - d$ = G[al-$(& ). (39) a t  

a, may now be obtained from (31) with the aid of (39). The result of the numerical 
integration gives the following values for the constants ai: a, = 0.93342, 
a, = 0.32313, and a2 = -0.2779. This compares with a value for a, of 0-9335 
found by Spalding & Cruddace (1961). 
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It now remains only to obtain the uniformly valid approximation, to the order 

J’L({, [, a) - P’(c)  +p’([) - (the part common to both expansions) 

a-* calculated. Using (20), with subscript c for ‘composite’, 

- 0.4 0.2 

2 4 6 8 10 

t 
FIGURE 1 .  Fundamental term, outer solution, CT 9 1. 
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FIGURE 2. First-order correction, outer solution, u 9 1. 
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FIGURE 3. First-order correction, inner solution, v > 1. 
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FIGURE 4. Fundamental solution for the temperature function, u > 1. 
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For computed results of Po, &, P;l, Pr; PI, 2;) pi, c; PI ,  &, Pi; 8,, 8;; 8,) a;, 
see the plots of figures 1-5. The composite expansions are shown in figures 6-7. 
Important numerical results, which cannot be read with sufficient accuracy from 
the figures, are given in table 1. 

t 
FIGURE 5. First-order correction term to temperature function, 1. 

a 9 1  
.&(O) = 0.9334 66(0) = -0.5357 p:(O) = 0.1743 I? , (O)  = 0 b,(co) = 1.355 
P;(O) = 0.3231 
tA(0) = 0.9334 

T;(O) = -0.2781 

$b(O) = 0 
Tr(0) = 0.1206 Gl(0) = 0 ~ , ( K I )  = 0.2381 
Ho(O) = 0.31985 ?;(O) = 0 F ~ ( C O )  = 0.9334 

F;(O) = -0.2480 F;(O) = 0 &(O) = 0.10212 H;(O) = 0 

u <  1 - 
&(O)  = 1.50792 
fL(0) = 1.50729 f i ( 0 )  = -0.84440 

computing satisfactory agreement between 

h&O) = 0.45603 G(0) = 0 ~ , ( c D )  = 1.51535t 

t For low CT the proper location for infinity in the independent variable [ is checked by 

TABLE 1 

6. Very small values of the Prandtl number 
The Prandtl number is a measure of the ratio of the thickness of the momentum 

boundary layer to that of the thermal boundary layer. Therefore, for the case of 
very small values of this parameter, the effect of buoyancy extends into the bulk 
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of the fluid surrounding the plume to a distance much larger than the effect of 
fluid viscosity. Over most of the fluid field the buoyancy and inertia forces will 
now balance, and the role of viscosity will be confined to  a narrow inner layer, 
where it counteracts fluid inertia and ensures the disappearance of the rate of 
strain in the plane of symmetry. Therefore, over most of the fluid field, the flow 
behaves inviscidly to fundamental-term approximation. As the viscous term is 
in general the one of highest order in the differential equations describing the 
flow, there will be an inability to fulfill at least one of the boundary conditions 
imposed physically (the one stipulating the disappearance of the rate-of-strain 
in the median plane); i.e. an expansion solution will be singular. In  the outer 
layer, both the conductive and convective terms have to be retained in the 
energy equation. 

7. The outer solution, c 4 1 

The requisite co-ordinate-stretching transformations take the form, 

f([) = a%F({) ,  K([) = (T-"({), [ = (rig. (42) 

These relationships are the equivalents of (16), which held for the case of very 
large Prandtl number, and the only ones which will retain the integral defined in 
(15) of finite order. The equations (Q) ,  ( lo ) ,  (15) now read: 

The fundamental solution will be obtained by setting (T = 0 in (43). Equation (44) 
will be fulfilled by the fundamental solution, the requirement upon the higher- 
order solutions being that their contribution to the integral vanish. 

The boundary conditions becomefo(0) = fi(m) = ko(co) = 0. An interpretation 
of the first condition, which is obtained from matching with the inner solution, 
is that in outer variables the inner layer forms a singular sheet just as in the case 
of large Prandtl number. Inspection of (43) for (T = 0 shows that it has a non- 
removable singularity a t  E = 0: this need not complicate numerical computation 
greatly (Rotem & Claassen 1969b). In the present context, an expansion in 
powers of (not necessarily integral) is required (Kuiken 1969). The expansion 
to fundamental order is 

where the constants b, and b, are obtained from numerical integration: 

b, = 1.50729 and b, = - 0.61085. 
38-2 
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The fundamental outer solutions and their derivatives have also been calculated 
(figure 8).t The inner solution, through the influence of the viscous terms, causes 
the rate of shear on the median plane to vanish. Consequently, this is not a re- 
quirement which the outer expansion has to fulfill: in outer variables the inner 
solution acts like a stretchable drag plate. 

8. The inner solution, u < 1 

In the narrow inner region the influence of viscosity forces is such as to satisfy 
the conditions of analyticity and symmetry of the velocity profile near the median 
plane. The condition that the first gradient of the temperuture vanish is already 
satisfied by the outer solution. Therefore, the inner layer will not influence the 
lateral heat dissipation from the plume to first order, resembling closely the 
cases of the heat transfer from plates a t  asymptotically small Prandtl number. 
The velocities in both inner and outer layers have to be of the same order of 
magnitude, while the contribution of the inner layer to the flux integral should 
vanish. All these requirements are fulfilled by the transformations, 

= ~-*F(LJ, h ( f )  = G - % H ( ~ ) ,  f = u+i+c. (47) 

It is apparent that these transformations lead to a scaling-up off (the dimension- 
less stream-function equivalent), and to a stretching to order unity of the width 
of the layer, which will also be of constant temperature to first order. The 
requisite equations are 

d3f^ --+- 1[  3f-- Ad? (:&)'I - +h A = 0, 

df3 5 a'p 
d2$ 3 d 

df2  5 d[ 
-+-u-( fh)  = 0, 

(45) 

(49) 

and f ( 0 )  =f"(O) = f i r to)  = 0. The fundamental-order solution is obtained by 
setting u to zero in these equations. The supplementary matching conditions, to 

The higher-order matching is now carried out in the standard way. It is convenient 
to express the outer solution in inner variables, and pass to the limit -+ 0, u -+ 0 
in that order, whence the behaviour of the outer expansions, 

The next term in the inner expansion, u*fl([) should satisfy 

(52) 

(53) 

t Further results may be obtained from Z. R. 
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where M(a ,  b,  z )  is Kummer’s function, Equation (53) gives the expected asymp- 
totic behaviour for large values of 5. 

Higher approximations may now be calculated, and have to be computed 
numerically to give uniformly valid solutions to the order of approximation 
dealt with.? Their addition is hardly justified by added physical information. 
The composite velocity becomes 

The composite solution is traced graphically in figure 9, together with the exact 
solutions obtained through direct numerical computation for CT = 0.01 and 0.1. 

9. Results and discussion 
This work supplements the information available on the behaviour of two- 

dimensional, laminar, buoyant plumes, by considering the two asymptotic cases 
of infinitely large and vanishingly small values of the Prandtl modulus. The 
solutions present some features not in general found in this type of analysis, 
which are due to the boundary conditions that obtain. ‘Universal’ solutions 
to the flow configuration considered are derived, in the sense that the dependence 
upon the exact value of the Prandtl number is reduced to a simple multiplicative 
effect. 

Figures 6 , 7  and 9 compare the asymptotic approximations obtained with data 
calculated directly numerically. Whereas in the case of natural convection from 
solid boundaries a value of CT = 5 comes very close to the asymptotically large 
CT case, while for 0-1 the same is true for the other extreme, this does not hold as 
well in the buoyant plume configuration. Moreover, as discussed in Rotem & 
Claassen (1969a), a more rapid approximation in the temperature profiles than 
in those of the velocity distribution is notable. 

It is remarkable that buoyancy forces appear to have no direct influence upon 
the zeroth-order solution for the case of CT --f 00. Thus, the only reason for which 
a plume can arise at  very high values of CT is to maintain energy conservation, 
which necessitates the removal of the source flux by a vertical velocity. The 
mechanism of the inception of the plume cannot be given unless the near vicinity 
of the source be considered separately. As far as the present work is concerned, 
the assumption is that the only singularity arises due to the parameter CT. Now, 
an underlying assumption for the validity of the boundary-layer equations, 
assumed from the outset, is that (Gi  x x*) be a large value. Here the Grashof 
number G may be based on any convenient reference length which renders the 
co-ordinate x of order unity, while this latter is measured from the source of 
heat in a direction opposite to that of the vector gravity. Thus, the system 
considered here does not possess a reference length in the large; and this is in fact 
the prerequisite for the possibility of similarity solutions. 

7 The computed valuos are available from Z.R. 
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However, when the region close to the source is considered, it is found that 
there is indeed a characteristic length in the small. Or, differently put, no matter 
how large the Grashof number, there will always be a range sufficiently near to 
the source where the present analysis will break down: in that region viscous 

r 
0.8 

c 
0.4 

1 2 3 4 
0 

FIGURE 6. Composite velocity function, s 1: -, composite solution; . . . . . , exact. 

FIGURE 7. Composite temperature function, c % 1: -, composite solution; . . . . , exact. 

and buoyancy forces will predominate. The existence of this inner region has 
recently received attention by Mahony (1956), Fendell (1968) and Hieber & 
Gebhart (1969). 

Some note should be taken of the fact that for the outer solution of the vanish- 
ingly small Prandtl number case, vorticity does not seem to decay exponentially 
rapidly with the lateral co-ordinate approaching the matching point with the 
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outer flow. Two complementary physically plausible explanations are available 
to explain this effect. (i) In  the first instance, it  should be realized that the match- 
ing is not with an outer potential flow field; thus, some of the arguments as to 

-0.15 

1.5 c 

1.4 

1.2 

0.8 

0.6 
fI. 

0.4 

I \ I  4 -0.10 

E! 
FIGURE 8. Fundamental term, outer solution, (r < 1. 

L 

I I I I I I I I I 
0.2 0.4 0.6 0.8 1-0 1.2 1.4 1.6 

FIGTJRE 9. Composite velocity function, u < 1: -, composite solution; . . . . . , exact. 

the necessity of exponential decay hardly apply to the present situation. (ii) The 
limit cr --f 0 may be interpreted as the increase in the thermal conductivity of the 
buoyant fluid beyond all limits. This immediately results in an infinitely fast 
conductive release of heat from the line source, effecting in a similar manner the 
buoyancy of the outer fluid. Problems such as these have been discussed in a 
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different and wider context by Brown & Stewartson (1965). Those authors and 
also Rotem (1 966) discuss other examples of related effects. 

The authors are grateful for the financial support and encouragement of the 
Canada National Research Council. 

R E F E R E N C E S  

BROWN, S. N. & STEWARTSON, K. 1966 J .  Flu id  Mech. 23, 673. 
COLE, J. D. 1968 Perturbation Methods in  Appl ied  Mathematics. Blaisdell. 
FENDELL, F. E. 1968 J .  Fluid Mech. 33, 163. 
HIEBER, C. A. & GEBHART, B. 1969 J .  Flu id  Mech. 38, 137. 
KUIKEN, H. K. 1968a J .  Eng .  Math .  2, 95. 
KUIKEN, H. K. 1968b J .  Eng. Math. 2, 355. 
KUIKEN, H. K. 1969 J. Fluid  Mech. 37, 785. 
MAHONY, J. J. 1956 Proc. Roy .  Soc. A 238, 412. 
ROTEM, Z. 1966 Chem Engng Sc i .  21, 618. 
ROTEM, Z. & CLAASSEN, L. 19696 J. Fluid Mech.  38, 173. 
ROTEM, Z. & CLAASSEN, L. 1969b Can. J .  Chem. Engng 47, 561. 
SPALDING, 13. B. & CRUDDACE, R. G. 1961 Int. J .  Heat M a s s  Transfer 3, 55. 
YIH, C. S .  1956 Proceedings of the First  Sympos ium o n  the Use of Models in Geophysics, 

ZELDOVICH, Y .  B. 1937 Zhur .  E x p .  Tear. Fiz. 7, 1463. 
Washington, 117. 


